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Drift of individual β-plane vortices confined to one layer of a two-layer fluid under
the rigid-lid condition is considered. For this purpose, the theory of two-layer quasi-
geostrophic singular vortices is employed. On a β-plane, any non-zonal displacement
of a singular vortex results in the development of a regular flow. An individual
singular β-plane vortex cannot be steady on its own: the vortex moves coexisting
with a regular flow, be the drift steady or not. In this paper, both kinds of drift of
a singular vortex are considered. A new steady exact solution is presented, a hybrid
regular–singular modon. This hybrid modon consists of a dipole component and a
circularly symmetric rider. The dipole is regular, and the rider is a superposition of
the singular vortex and a regular circularly symmetric field. The unsteady drift of a
singular vortex residing in one of the layers is considered under the condition that,
at the initial instant, the regular field is absent. The development of barotropic and
baroclinic regular β-gyres is examined. Whereas the barotropic and baroclinic modes
of the singular vortex are comparable in magnitudes, the baroclinic β-gyres attenuate
with time, making the trajectory of the vortex close to that of a barotropic monopole
on a β-plane.

1. Introduction
The behaviour of localized vortices on a β-plane is a long-standing problem

of geophysical fluid dynamics. The two main subjects in discussion are steadily
translating vortical structures and unsteadily evolving individual vortices. In this
paper, we address both issues by employing the concept of two-layer quasi-geostrophic
singular vortices (Reznik & Kizner 2007). In both cases, the two-layer quasi-
geostrophic model with a rigid-lid condition at the surface is used, and an individual
singular vortex confined to one layer is considered. Owing to the β-effect, an individual
singular vortex on its own is not a steady-state solution to the problem, and therefore
must coexist with a regular velocity field superimposed on the velocity field associated
with the singular vortex itself. The equations governing the cooperative evolution of a
singular vortex and the regular background flow due to the β-effect are derived in § 2.
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Eddies in the atmosphere and oceans are often durable. Therefore, much attention
has been given to vortical structures that travel steadily in the zonal direction, i.e.
along latitude circles, without changing their shapes (see Flierl et al. 1980; Kizner
1984, 1997; Tribbia 1984; Verkley 1984; Reznik 1987; Nycander 1988; Kizner et al.
2002, 2003a, b; Khvoles, Berson & Kizner 2005 and the references therein). Vortical
configurations of this type are commonly referred to as modons.

The simplest β-plane modon is a dipolar structure, whose translational movement
is due to the interaction between the vortices constituting the dipole (Larichev
Reznik 1976a). In fact, any modon must contain a dipole or, more generally, an
antisymmetric component (Reznik 1987). The role of the antisymmetric component
in the modon translation is similar to that of a dipole; therefore, we frequently use
the term ‘dipole’ component instead of ‘antisymmetric’ component. The presence of a
component symmetric about the axis of the modon propagation is also possible. If the
symmetric component is sufficiently strong, it can mask the dipole component (which
is, probably, the case in durable atmospheric and oceanic eddies). The nonlinear self-
interaction of the symmetric component enters the equation that describes the dipole.
Therefore, generally, the symmetric component affects the dipole component and the
translation speed of the modon as a whole (Kizner et al. 2002, 2003a,b; Kizner 2006).
Modon solutions marked by the self-interaction of the symmetric component, the
so-called elliptical baroclinic modons, were suggested by Kizner et al. (2003a). In
the particular case where self-interaction of the symmetric component vanishes, this
component can be arbitrarily strong and does not influence the dipole component and
the modon translation speed. Such a symmetric component is colloquially referred
to as a ‘rider’. This situation occurs, for example, in the solutions with circularly
symmetric baroclinic modes (Flierl et al. 1980; Kizner 1984, 1997).

Steadily translating ensembles of singular β-plane vortices have been considered
in a number of papers (e.g. Reznik 1992; Gryanik 1986, 1988; Flierl 1987; Gryanik,
Borth & Olbers 2004). In these vortical configurations, the amplitudes and coordinates
of singular vortices are specially fitted to afford a steady translation of the ensemble
without generation of any regular flow in addition to the flow associated with
the singular vortices. Such a solution can be called a singular modon. Obviously, the
simplest singular modon is a dipole consisting of two singular vortices of opposite
signs. However, can a β-plane ‘hybrid’ modon solution be constructed, in which a
steady flow induced by an individual singular vortex coexists with a steady regular
flow? An approximate barotropic modon solution, where one singular vortex is
equilibrated by a localized regular component was suggested by Reznik (1986). In
this paper, we present an exact two-layer hybrid modon solution (§ 3). The solution is a
sum of a regular dipole and a circular rider, which consists of one upper-layer singular
vortex and a regular circularly symmetric component. The total angular momentum
of the rider is zero. A characteristic property of this modon solution is its smoothness,
i.e. the continuity of the streamfunction, velocity and potential vorticity in each layer
everywhere except for the point where the singular vortex locates. Smoothness is an
important feature of a modon, because numerical experiments revealed that smooth
modons can be much more durable than modons with non-smooth riders (Kizner et
al. 2002, 2003a).

The behaviour of an individual monopolar vortex differs from that of a modon. A
study of non-stationary evolution of a localized vortex on the β-plane is another ob-
jective of our work. On the f-plane, an axisymmetric vortex is stationary. The β-effect
and nonlinearity induce the development of a secondary dipolar circulation in the
vicinity of the vortex. This secondary circulation, known as β-gyres, forces the vortex
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to move along a curved trajectory. The form of this trajectory depends on the sense of
rotation of the vortex: a cyclone travels northwestward, and an anticyclone southwest-
ward. Development of the β-gyres and their effect on barotropic cyclones and anticyc-
lones were thoroughly examined both analytically (Reznik & Dewar 1994; Sutyrin &
Flierl 1994; Reznik, Grimshaw & Benilov 2000) and numerically (Sutyrin et al. 1994).

The dynamics of baroclinic vortices are much more complicated and are still not
clearly understood. Most studies have addressed the evolution of a fully baroclinic
two-layer monopole, a vortex that initially does not contain any barotropic modes.
We assign such a vortical structure to individual baroclinic vortices, even though,
formally, it can be regarded as a pair of coaxial vortices. The generation of baroclinic
β-gyres plays an important role in the evolution of such a structure, at least in the
early stage. For example, when two coaxial point vortices opposite in sign reside in
different layers, the baroclinic β-gyres incline the initially vertical axis of the vortex by
shifting the cyclone to the north and the anticyclone to the south (Reznik, Grimshaw
& Sriskandarajah 1997; Reznik & Kizner 2007, § 3.4.2). The subsequent evolution of
this baroclinic structure differs fundamentally from that of an individual barotropic
vortex (which propagates mainly westwards). Setting in of the meridional separation
between the cyclone and anticyclone initiates their interaction. This results in an
eastward drift of the vortex pair as a whole. The latter is consistent with numerical
simulations, which demonstrated the ability of a fully baroclinic distributed monopole
to eventually transform into an eastward-propagating baroclinic modon (McWilliams
& Flierl 1979; Mied & Lindemann 1982; Kizner et al. 2002).

An important question arises as to how the above scenario changes when the initial
vortex is neither fully baroclinic nor purely barotropic, but contains both modes.
Reznik et al. (1997) conjectured that the barotropic component, provided it is suffi-
ciently strong, might dominate the long-term dynamics of such a vortex. Here, we con-
sider the unsteady evolution of an individual vortex confined to the upper layer (§ 4).
Obviously, such a vortex contains both the barotropic and baroclinic modes that are
comparable in magnitudes. Assuming the regular field to be zero at the initial instant,
we examine the development of the barotropic and baroclinic regular β-gyres at sub-
sequent times and show that the baroclinic β-gyres attenuate with time. Therefore, the
trajectory of the vortex becomes close to that of a barotropic monopole on a β-plane.

The results of the work are summarized and discussed in § 5. Some cumbersome
mathematical details are provided in Appendices A and B.

2. Basic equations
We depart from the well-known equations of conservation of the quasi-geostrophic

potential vorticity (PV) in a two-layer fluid of constant depth with a rigid-lid condition
at the surface:

∂Πi

∂t
+ J (ψi, Πi) = 0, Π = qi + βy, i = 1, 2. (2.1a)

Here, subscripts i = 1, 2 are indices of the first (upper) and second (lower) layers;
ψi , Πi and qi are the streamfunction, PV, and intrinsic vorticity in layer i, respectively.
The intrinsic vorticities are defined by the following equations:

q1 = ∇2ψ1 + Λ1(ψ2 − ψ1), q2 = ∇2ψ2 + Λ2(ψ1 − ψ2). (2.1b, c)

In (2.1b, c), Λ1 = f 2
0 /g′H1 and Λ2 = f 2

0 /g′H2, where the constants f0 and β are the
reference value and northward gradient of the Coriolis parameter, g′ = g(ρ2 − ρ1)/ρ2

is the reduced gravity, Hi and ρi are the mean depth and fluid density in layer i.
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A unit singular vortex confined to the upper layer and located at the origin is
determined by the following equations:

∇2ψu
1,s + Λ1

(
ψu

2,s − ψu
1,s

)
− p2ψu

1,s = δ(x)δ(y), (2.2a)

∇2ψu
2,s + Λ2

(
ψu

1,s − ψu
2,s

)
− p2ψu

1,s = 0. (2.2b)

Here, x and y are the eastward and northward coordinates, respectively; δ( ) is Dirac’s
delta-function; ψu

i,s is the streamfunction of the flow induced in layer i by the unit
singular vortex located in layer 1; p is an arbitrary positive constant, unless otherwise
stated (Reznik & Kizner 2007, § 2.3). Equations (2.2) imply:

ψu
1,s = − 1

2π
(α1K0(pr) + α2K0(pΛr)) , ψu

2,s = − α1

2π
(K0(pr) − K0(pΛr)) , (2.3a, b)

where p2
Λ = p2 + Λ1 + Λ2; αi = Hi/(H1 + H2); r is the polar radius; Km() and Im()

are the m-order modified Bessel functions of their arguments. The streamfunction
ψu

1,s has a logarithmic singularity at r = 0, whereas the streamfunction ψu
2,s is regular

throughout the (x, y)-plane.
To consider a flow that contains both the regular and singular components, the

streamfunction in layer i is represented as:

ψi = ψi,r + ψi,s, i = 1, 2, (2.4)

where ψi,r is the streamfunction of the regular flow in layer i, and

ψ1,s = Aψu
1,s(|r − r0|), ψ2,s = Aψu

2,s(|r − r0|), (2.5)

are the streamfunctions of the flows produced in layers 1 and 2 by a singular vortex
that has a constant amplitude A and moves along a trajectory r = r0(t) = (x0(t), y0(t)).
Substitution of (2.3)–(2.5) into (2.1) yields the following equations that govern the
evolution of the regular field interrelated with the motion of the singular vortex:

∂

∂t
(qi,r + p2ψi,s + βy) + J (ψi,r + ψi,s, qi,r + p2ψi,s + βy) = 0, i = 1, 2. (2.6a)

ẋ0 = − ∂ψ1,r

∂y

∣∣∣∣
r=r0

, ẏ0 =
∂ψ1,r

∂x

∣∣∣∣
r=r0

(2.6b, c)

(for a number of singular vortices residing in both layers these equations were derived
by Reznik & Kizner 2007, § 2.2). The variables q1,r and q2,r in (2.6a) are defined as

q1,r = ∇2ψ1,r + Λ1(ψ2,r − ψ1,r ), q2,r = ∇2ψ2,r + Λ2(ψ1,r − ψ2,r ). (2.7a, b)

3. Hybrid modon
In this section, we concern ourselves with the construction of a hybrid two-layer

modon solution that incorporates both singular and regular components. The singular
component is represented by an upper-layer singular vortex (equations (2.3) and (2.5))
located in the modon centre. The regular field is made up of a dipole and a circularly
symmetric monopole. The regular dipole component produces the steady eastward
translation of the modon, whereas the regular monopole equilibrates the singular
vortex yielding zero total angular momentum of the modon. The latter is a necessary
condition for the existence of a modon (Flierl et al. 1980, 1983).

The streamfunctions of a modon that travels along the x-axis at a constant speed
U can be represented as:

ψi = ψi,r (x − Ut, y) + ψi,s(x − Ut, y), (3.1)
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where i = 1, 2; and ψi,s are given by (2.5) with r0 = (Ut, 0). In a co-moving frame of
reference (attached to the modon), (2.6) become:

J (ψi,r + ψi,s + Uy, qi,r + p2ψi,s + βy) = 0, U =
∂ψ1,r

∂y

∣∣∣∣
r=0

. (3.2a, b)

Following Larichev & Reznik (1976a) and Flierl et al. (1980), we assume that a
circular contour (separatrix) r = a exists, dividing the (x, y)-plane into two domains,
the exterior and interior. The interior domain, r < a, is characterized by, at least in
one of the layers, being filled with closed streamlines – contours of the full co-moving
streamfunction Ψi = ψi,r + ψi,s + Uy. In the exterior domain, r > a, the streamlines
are open in both layers.

As seen from (2.3), ψi,s |r→∞ = 0. Since a modon is a localized vortical structure,
we require that ψi,r |r→∞ = 0. Under these conditions, in the exterior region, (3.2a)
reduces to:

qi,r + p2ψi,s + βy =
β

U
(ψi,r + ψi,s + Uy), r > a, i = 1, 2, (3.3a)

(cf. Flierl et al. 1980). Regarding the interior region, (3.2a) means that, in each layer,
there is a functional relation between the potential vorticity, Πi , and the full co-moving
streamfunction, Ψi:

qi,r + p2ψi,s + βy = Fi(ψi,r + ψi,s + Uy), r < a, i = 1, 2, (3.3b)

where Fi() is some differentiable function.
In the upper layer, the left-hand side of (3.3b) contains a singularity at r = 0. The

simplest way to cancel this singularity is to set p2 = β/U and F1(Ψ1) = p2Ψ1, i.e. to
assume that the same linear relation between Π1 and Ψ1 holds in both the exterior
and interior domains. In this case, throughout the (x, y)-plane, (3.2a) in the upper
layer becomes:

q1,r − p2ψ1,r = 0. (3.4)

In the lower layer, in the interior domain we set F2 to be linear, F2(Ψ2) = −k2Ψ2+D,
where k2 and D are some constant parameters that are to be specified. In fact, once
the separatrix is chosen to be circular, linearity becomes the only possible choice
(Kizner et al. 2003a). Thus, equations (3.3), which determine the regular component
in layer 2, are:

q2,r − p2ψ2,r = 0, r > a, (3.5a)

q2,r + p2ψ2,s + βy = −k2(ψ2,r + ψ2,s + Uy) + D, r < a. (3.5b)

To assure continuity of the streamfunction, velocity and vorticity fields, we seek a
doubly continuously differentiable solution to (3.4), (3.5). This implies the following
matching conditions at the separatrix r = a:

[
ψi,r

]
r=a

= 0,

[
∂ψi,r

∂r

]
r=a

= 0,

[
∂2ψi,r

∂r2

]
r=a

= 0, i = 1, 2, (3.6)

where the bracket symbol [ ] denotes the jump of a function at the contour r = a.
To avoid the difficulties caused by the interplay of the functions ψ1,r and ψ2,r in

the interior domain r < a (see (3.4), (3.5b) and (2.7)), the normal-mode variables, ψ̄1,r

and ψ̄2,r , are introduced. These new variables defined as linear combinations of ψ1,r

and ψ2,r ,

ψ̄i,r = ψ1,r + ᾱiψ2,r , i = 1, 2, (3.7)
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satisfy the following decoupled equations

∇2ψ̄i,r + k2
i ψ̄i,r = −ᾱi[(k

2 + p2)ψ2,s − D + (k2U + β)y], (3.8)

where

k2
i = −(Λ1 + p2) + ᾱiΛ2, (3.9)

and ᾱi are roots of the quadratic equation in ᾱ,

ᾱ2 − 1

Λ2

(p2 + k2 + Λ1 − Λ2) ᾱ − Λ1

Λ2

= 0. (3.10)

According to (3.9) and (3.10), k2
1 and k2

2 obey the relationship:(
k2

1 + Λ1 + p2
)(

k2
2 + Λ1 + p2

)
= −Λ1Λ2, (3.11)

therefore, at least one of k2
i is negative. For definiteness, we assume that k2

1 < k2
2

and k2
1 < 0. Under these assumptions, as follows from the matching conditions (3.6),

parameter k2
2 must be positive (see Appendix A), i.e.

k2
1 < 0, k2

2 > 0. (3.12)

We assume the solution of the interior problem to consist of a circularly symmetric
component,ψ̄ (0)

i,r (r), and a componentψ̄ (d)
i,r (r) sin θ, which is antisymmetric relative to

the x-axis:

ψ̄i,r = ψ̄
(0)
i,r (r) + ψ̄

(d)
i,r (r) sin θ. (3.13)

Substitution of (3.13) into (3.8) provides the following equations for ψ̄
(0)
i,r (r) and

ψ̄
(d)
i,r (r):

∇2ψ̄
(0)
i,r + k2

i ψ̄
(0)
i,r = −ᾱi(k

2 + p2)ψ2,s + ᾱiD, (3.14a)

∇2ψ̄
(d)
i,r + k2

i ψ̄
(d)
i,r = −ᾱi(k

2U + β)y. (3.14b)

Taking into account relationships (2.3) and (2.5), the solutions to (3.14) can be written
as

ψ̄
(0)
i,r =

α1A

2π

ᾱi(p
2 + k2)

(p2 + k2
i )(p

2
Λ + k2

i )
ḡi + CiG0(|ki |r) +

ᾱi

k2
i

D, (3.15a)

ḡi =
(
p2

Λ + k2
i

)
K0(pr) −

(
p2 + k2

i

)
K0(pΛr) +

(
p2

Λ − p2
)
Z0(|ki | r), (3.15b)

ψ̄
(d)
i,r =

[
A

(1)
i G1(|ki | r) − ᾱi(k

2U + β)r

k2
i

]
sin θ. (3.15c)

with Ci , A
(1)
i being constants that will be specified later. The remaining notations

are:

Gm(|k1|r) = Im(|k1|r), Gm(|k2|r) = Jm(k2r), m = 0, 1, (3.16a)

Z0(|k1|r) = −K0(|k1|r), Z0(|k2|r) =
1

2
πY0(k2r), (3.16b)

where Jm( ) and Ym( ) are the m-order Bessel functions of the first and second kinds,
respectively. It can readily be checked that, despite the singularity of the functions
K0 and Y0 at r = 0, the functions ḡi and, hence, ψ̄

(0)
i,r , are regular.
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In the exterior domain, r > a, (3.4) and (3.5a) are valid. Thus, the solution here is
given by (3.13) with

ψ̄
(0)
i,r = (1 + ᾱi)B0K0(pr) + (α2 − α1ᾱi)B

(Λ)
0 K0(pΛr), (3.17a)

ψ̄
(d)
i,r = [(1 + ᾱi)B1K1(pr) + (α2 − α1ᾱi)B

(Λ)
1 K1(pΛr)] sin θ, (3.17b)

where the constant coefficients B0, B1, B
(Λ)
0 and B

(Λ)
1 are to be determined.

Given U (or a), we can determine the parameters k1, k2, ᾱ1, ᾱ2, k and a (or U),
and the coefficients appearing in (3.15a, c) and (3.17). Because the calculations
are cumbersome, for the moment we present only their outline and results; for a
detailed analysis see Appendix A. To specify the coefficients A

(1)
i ,B0, B

(Λ)
0 , B1, B

(Λ)
1

and Ci , we substitute (3.13) into (3.2b) and in the matching conditions (3.6) rewritten
in terms of the normal-mode variables (3.7). As a result, a system of linear
equations in A

(1)
i ,B1, B

(Λ)
1 , B0, B

(Λ)
0 and Ci is obtained. The solvability conditions

for the subsystem in A
(1)
i ,B1, B

(Λ)
1 , along with (3.9)–(3.11), impose constraints on the

parameters k1, k2, ᾱ1, ᾱ2, k, U and a, so that only one of these parameters is free. By
fixing, for example, the modon translation speed U, we can determine the modon
radius a, the parameters ki, ᾱi and k and, hence, the coefficients A

(1)
i ,B1, B

(Λ)
1 in (3.15c)

and (3.17b). The equations determining A, D, B0, B
(Λ)
0 and Ci are linearly dependent,

therefore, the amplitude A of the singular vortex is arbitrary, whereas the coefficients
D, B0, B

(Λ)
0 and Ci are proportional to A. Further, given ᾱi and the functions ψ̄

(0)
i,r and

ψ̄
(d)
i,r , the regular streamfunctions ψi,r are found from (3.7) and (3.13):

ψi,r = ψ
(0)
i,r (r) + ψ

(d)
i,r (r) sin θ. (3.18a)

In (3.18a), the circularly symmetric rider ψ
(0)
i,r (r), and the dipole component ψ

(d)
ir (r)

are given by the following formulae

ψ
(0)
1,r =

ᾱ2ψ̄
(0)
1,r − ᾱ1ψ̄

(0)
2,r

ᾱ2 − ᾱ1

, ψ
(0)
2,r =

ψ̄
(0)
2,r − ψ̄

(0)
1,r

ᾱ2 − ᾱ1

, (3.18b, c)

ψ
(d)
1,r =

ᾱ2ψ̄
(d)
1,r − ᾱ1ψ̄

(d)
2,r

ᾱ2 − ᾱ1

, ψ
(d)
2,r =

ψ̄
(d)
2,r − ψ̄

(d)
1,r

ᾱ2 − ᾱ1

. (3.18d, e)

The structure of the solution depends on the parameter k2, which is subject to the
restriction:

j1,n � k2a � j2,n, (3.19)

with j1,n and j2,n being the nth roots of the first- and second-order Bessel functions
J1 and J2, respectively (m = 1, 2, . . .). Theoretically, the modon’s structure strongly
depends on n since, because of the alternating behaviour of Bessel functions Jm in
(3.16a), the antisymmetric component of the solution contains 2n regions of closed
streamlines rather than two ones as in dipoles. The simplest structure should be
obtained at n = 1. In this case, the antisymmetric component must be a dipole, i.e. a
pair of vortices of opposite signs. We can guess that the solutions with n > 1 (if they
exist) are unstable (Kizner & Berson 2000). A numerical examination of the cases
n = 1 and n = 2 shows that at n = 1 a solution does exist, whereas at n = 2 does not.

As seen in figure 1, where the modon dispersion relation (i.e. size vs. speed) is
shown, the modon radius a decreases monotonically as the translation speed U grows.
Both a and U are non-dimensional, being scaled with the Rossby deformation radius
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0 1 2 3 4 5 6

U

1.68

1.72

1.76

1.80

1.84

1.88

a

Figure 1. Dispersion relationship for a hybrid modon at H1 :H2 = 1:4. The modon radius a
and the translation speed U are scaled with Rd =

√
Λ1 + Λ2 and βR2

d , respectively.

Rd =
√

Λ1 + Λ2 and βR2
d , respectively; the stratification assumed in this example is

H1 : H2 = α1 : α2 = 1: 4.
The amplitude of the circularly symmetric rider is arbitrary and is determined

by the magnitude A of the singular vortex. As explained in § 1, such a rider does
not affect the modon transition. In figure 2, the radial profiles of the singular- and
regular-component streamfunctions of the circularly symmetric rider are shown for
the case A > 0, i.e. when the singular vortex is a cyclone. In both layers, the singular
vortex induces rotation of the same sense, and in the upper layer (where the singular
vortex resides) the motion is much stronger than in the lower layer (figure 2a, b). The
total angular momentum of any modon must be zero (see Flierl et al. 1980, 1983).
Regarding our hybrid solution this implies that∫

(α1ψ1,s + α2ψ2,s)dxdy +

∫ (
α1ψ

(0)
1,r + α2ψ

(0)
2,r

)
dxdy = 0, (3.20)

where the integration is carried out over the entire (x, y)-plane. At A > 0, both
ψ1,s and ψ2,s are negative, and the second integral on the left-hand side of (3.20) is
positive. Thus, the regular component of the rider is predominantly anticyclonic. In
fact, the regular component of the rider is anticyclonic in both layers and, unlike the
singular component, is more or less of the same magnitude in both layers (figure 2c).
Evidently, in the upper layer, the singular component, ψ1,s , is dominant in the rider,

whereas in the lower layer, the regular component ψ
(0)
2,r is dominant.

The dipole component of the hybrid modon is shown in figure 3. An important
feature of the dipole is that the amplitude of the streamfunction in the lower-layer is
much larger (almost by the order of magnitude) than in the upper layer. This can be
explained by considering the barotropic component of the modon. It is this barotropic
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Figure 2. Rider component of a hybrid modon. Profiles of the rider streamfunctions at
H1:H2 = 1:4 and A = 1. (a) Upper-layer singular streamfunction, ψ1,s; (b) lower-layer singular

streamfunction, ψ2,s; (c) regular streamfunctions ψ
(0)
1,r and ψ

(0)
2,r in the layers: 1, upper-layer; 2,

lower-layer.

dipole component that serves as an ‘engine’ causing the eastward self-propulsion of
the modon as a whole. A direct calculation shows that the velocity induced by the
barotropic mode of the dipole (at the point where the singular vortex occurs) exceeds
the translation speed U. Therefore, to satisfy condition (3.2b), the dipole ψ̄

(d)
i,r (r) sin θ

should contain a baroclinic mode that depresses the upper-layer dipole and makes it
propel the singular vortex with the speed U. In contrast, in the lower layer, the dipole
is enhanced by the baroclinic dipole.

The key issue in the construction of an exact hybrid modon solution was the
elimination of singularity in (3.3b) at i = 1, which resulted in (3.4). Such elimination
is impossible in the framework of a barotropic model. Accordingly, so far only an
approximate barotropic hybrid modon solution had been found (Reznik 1986).



212 G. Reznik and Z. Kizner

-2.5 0 2.5
–2.5

0

2.5

000 0

-2.5

(a) (b)

0 2.5

0

–2.5

2.5

Figure 3. Dipole component of the hybrid modon. Contours of the dipole streamfunctions
in the layers at H1 : H2 = 1: 4, a = 1.8. Solid lines, positive (anticyclone); dashed lines,

negative (cyclone). (a) Upper layer, max |ψ (d)
1,r | ≈ 0.3, contour interval 0.05; (b) lower layer,

max |ψ (d)
1,r | ≈ 2.18, contour interval 0.4.

4. Non-stationary evolution of an individual singular vortex
The subject of this section will be the motion of an intense upper-layer individual

singular vortex associated with the development of a regular flow. Let the regular
field be absent at the initial instant. In this case, at t = 0, the streamfunctions in the
layers are given by (2.5). At subsequent times, in response to meridional displacement
of the singular vortex, some regular flow arises because of the β-effect, and the
singular vortex starts moving along a certain path r = r0 = (x0(t), y0(t)) with the
speed U = (U, V ), where U = ẋ0(t) and V = ẏ0(t). At the very beginning, a singular
vortex located in one of the layers behaves similarly to a purely barotropic vortex:
a cyclone moves northward and an anticyclone southward (Reznik & Kizner 2007,
§ 3.4.1). To study the motion of the vortex at later stages, the development of the
β-gyres should be examined. Thus, we arrive at an initial-value problem, which is
determined by (2.6) supplemented with the initial conditions ψi,r |t=0 = 0.

To facilitate the subsequent analysis, equations (2.6) are rewritten in non-
dimensional variables in the co-moving frame of reference attached to the singular
vortex:

∂qi,r

∂t
+

∂ψi,s

∂x
+ J (ψi,s, qi,r ) + p2J (ψi,r + Uy − V x, ψi,s)

+ ε

[
∂ψi,r

∂x
+ J (ψi,r + Uy − V x, qi,r )

]
= 0, (4.1a)

ẋ0 = U = − ∂ψ1,r

∂y

∣∣∣∣
r=0

, ẏ0 = V =
∂ψ1,r

∂x

∣∣∣∣
r=0

. (4.1b, c)

Here the space variables, time and velocity are scaled with the Rossby radius, Rd =√
Λ1 + Λ2, typical advective time 2πR2

d/A, and βR2
d , respectively. Accordingly, the

scale of the regular streamfunctions ψi,r is βR3
d . This scaling assures the balance

between the terms ∂qi,r/∂t, β(∂ψi,s/∂x) and J (ψi,s, qi,r ) in (2.6a). The reason for such
a scaling is that the development of the regular flow is due to the β-effect and is
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induced by the meridional displacement of the singular vortex (see also Reznik 1992).
In (4.1a),

ψ1,s = −[α1K0(pr) + α2K0(pΛr)], ψ2s = −α1[K0(pr) − K0(pΛr)], (4.2a, b)

q1,r = ∇2ψ1,r + α2(ψ2,r − ψ1,r ), q2,r = ∇2ψ2,r + α1(ψ1,r − ψ2,r ); (4.2c, d)

parameter p is non-dimensional (obtained by multiplication of the dimensional p by
Rd), p2

Λ = 1 + p2, and ε = 2πβR3
d/A is the ratio of the typical drift speed βR2

d to the
typical advective velocity A/2πRd. We consider an intense vortex, in which case ε is
a small parameter:

ε � 1. (4.3)

By eliminating the term with the factor ε, (4.1a) becomes:

∂qi,r

∂t
+

∂ψi,s

∂x
+ J (ψi,s, qi,r ) + p2J (ψi,r + Uy − V x, ψi,s) = 0. (4.4)

Despite the approximation, equations (4.4) (i = 1, 2) are still too complicated.
Therefore, we adopt another simplifying assumption:

p2 � 1. (4.5)

To find the meaning of condition (4.5), recall that the baroclinic component of the
singular vortex (4.2a, b) is proportional to K0(pΛr) and the barotropic component to
−α1K0(pr). Thus, the space scale of the barotropic component, 1/p, is assumed large,
so that, in the initial state, the baroclinic mode decreases at infinity substantially
faster than the barotropic mode.

Neglecting small terms in (4.4), we obtain

∂(qi,r + y)

∂t
+ bi

∂(qi,r + y)

∂θ
= 0, (4.6)

where θ is the polar angle in the co-moving frame of reference, and

bi =
1

r

∂ψi,s

∂r
, b1 =

1

r
(α1pK1(pr) + α2pΛK1(pΛr)) , b2 =

α1

r
(pK1(pr) − pcK1(pΛr)) .

(4.7a–c)

The derivation of the solution to (4.6) that satisfies the initial condition qi,r |t=0 = 0 is
straightforward:

qi,r = −r(1 − cos bit) sin θ − r sin bit cos θ. (4.8)

As seen from (4.8), in each layer, the regular vorticity field qi,r induced by the β-effect
and nonlinearity appears as a dipole, i.e. a pair of β-gyres, whose axis, structure and
magnitude vary with time.

To calculate the streamfunctions of these β-gyres, we decompose ψ1,r and ψ2,r into
linear combinations of the regular barotropic and baroclinic modes, ψBT andψBC:

ψ1,r = ψBT + α2ψBC, ψ2,r = ψBT − α1ψBC. (4.9a, b)

Substitution of (4.9) into (4.2c, d) and (4.8) yields:

ψBT = ψ
(s)
BT sin θ + ψ

(c)
BT cos θ, ψBC = ψ

(s)
BC sin θ + ψ

(c)
BC cos θ, (4.10a, b)

where

ψ
(s)
BT =

r

2

∫ ∞

r

r(1 − α1 cos b1t − α2 cos b2t)dr +
1

2r

∫ r

0

r3(1 − α1 cos b1t − α2 cos b2t)dr,

(4.11a)
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ψ
(c)
BT =

r

2

∫ ∞

r

r(α1 sin b1t + α2 sin b2t)dr +
1

2r

∫ r

0

r3(α1 sin b1t + α2 sin b2t)dr, (4.11b)

ψ
(s)
BC = I1(r)

∫ ∞

r

r2K1(r)(cos b2t − cos b1t)dr + K1(r)

∫ r

0

r2I1(r)(cos b2t − cos b1t)dr,

(4.11c)

ψ
(c)
BC = I1(r)

∫ ∞

r

r2K1(r)(sin b1t − sin b2t)dr + K1(r)

∫ r

0

r2I1(r)(sin b1t − sin b2t)dr.

(4.11d)

Once the function ψ1,r is known, the drift speed of the vortex can be calculated based
on (4.1b, c):

ẋ0 = U = − 1
2

∫ ∞

0

r[1 − (α1 + α2rK1(r)) cos b1t − α2(1 − rK1(r)) cos b2t]dr, (4.12a)

ẏ0 = V = 1
2

∫ ∞

0

r[(α1 + α2rK1(r)) sin b1t + α2(1 − rK1(r)) sin b2t]dr. (4.12b)

The development of the β-gyres is shown in figure 4 for the case A > 0 (cyclonic
singular vortex). From this figure, we notice that the regular flow in each layer is a
dipole that induces the northwestward drift of the singular vortex. The strength of
the dipoles increases with increasing time. Therefore, the absolute values of each of
the components of the total drift speed, U and V, presented in figure 5 also grow
with time, and the drift of the singular monopole accelerates. An important feature
of this evolution is that, with the passage of time, the barotropic mode of the β-gyres
enhances much faster than the baroclinic mode: by t = 50, the barotropic mode
exceeds the baroclinic one by an order of magnitude. Long-term calculations and
asymptotic analysis show that, at some moment, the growth of the baroclinic mode
ceases; thereafter this component decays (see below).

To characterize the relative impacts of the barotropic and baroclinic components
of the regular flow on the vortex drift, we decompose the drift speed determined by
(4.12) into components due to the barotropic and baroclinic β-gyres:

(U, V ) = (UBT , VBT ) + (UBC, VBC). (4.13)

These components, denoted by subscripts BT and BC, will be referred to as the
barotropic and baroclinic drift speeds, respectively. Equations (4.12) and (4.13) imply:

UBT =− 1
2

∫ ∞

0

r(1 − α1 cos b1t − α2 cos b2t)dr, VBT = 1
2

∫ ∞

0

r(α1 sin b1t + α2 sin b2t)dr,

(4.14a, b)

UBC =
α2

2

∫ ∞

0

r2K1(r)(cos b1t − cos b2t)dr, VBC =
α2

2

∫ ∞

0

r2K1(r)(sin b1t − sin b2t)dr.

(4.14c, d)

The evolution of the total drift speed and its barotropic and baroclinic components
is shown in figure 5. The barotropic meridional speed component, VBT , is close to the
total meridional speed at all times; thus, the baroclinic component, VBC , is negligible.
At sufficiently large times the baroclinic zonal speed, UBC , is also rather small, and
the total zonal speed, U, becomes close to UBT .
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Figure 4. Barotropic and baroclinic β-gyres: contours of the barotropic and baroclinic
streamfunctions, ψBT and ψBC , at H1:H2 = 1:4. Solid and dashed lines as in figure 3.
(a, b), t = 1; (c, d), t = 50. (a) ψBT , max |ψBT | ≈ 0.26, contour interval 0.05; (b) ψBC ,
max |ψBC | ≈ 0.15, contour interval 0.05; (c) ψBT , max |ψBT | ≈ 10.97, contour interval 1; (d)
ψBC , max |ψBC | ≈ 1.01, contour interval 0.1.

Asymptotic estimates at large times confirm these conclusions. According to these
estimates (Appendix B), the baroclinic β-gyres decay at large times and, consequently,
the following asymptotics hold at any fixed r

UBC = O

(
1

t

)
, VBC = O

(
1

t

)
, t → ∞. (4.15)

ψBC = O

(
1

t

)
, t → ∞. (4.16)

On the contrary, the barotropic β-gyres build up at large times, and for any fixed r
we obtain:

UBT =
1

p2

(
1
2
ln2 t + γ ln t

)
+ O(1), t → ∞, (4.17a)

VBT =
1

p2

(π

2
ln t − c0

)
+ O

(
ln t

t

)
, t → ∞, (4.17b)
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Figure 5. Temporal evolution of the vortex drift speed at H1: H2 = 1:4 and p = 0.3
(non-dimensional). (a) Zonal speed U and its components UBT and UBC; (b) northward speed
V and its components VBT and VBC . Subscripts BT and BC denote the speed components due
to the barotropic and baroclinic β-gyres, respectively.

ψBT = r(−UBT sin θ + VBT cos θ) + O(1), t → ∞, (4.18)

where γ and c0 are constants.
The above analysis shows that the β-gyres tend to become barotropic with the

passage of time, and the resulting drift of the singular vortex becomes similar to the
drift of a barotropic monopole: a cyclone moves northwestward, and an anticyclone
southwestward. The baroclinic components of the β-gyres tend to incline the axis
of the entire vortical structure, i.e. to increase the horizontal separation between the
centres of the upper and lower vortices (defined as the distance between the location
of the upper-layer singular vortex, and the point where the maximal absolute value
of the lower-layer streamfunction is assumed). This effect of the baroclinic β-gyres
attenuates with increasing time. The observed evolution of an individual singular
vortex confined to one layer differs from that of a purely baroclinic singular vortex
(see § 1). We believe this difference is due to the presence of a sufficiently strong
barotropic component in the individual singular vortex.

5. Summary and discussion
To examine the interaction between an individual singular vortex and a regular flow

in a two-layer fluid on a β-plane, we applied the theory of two-layer quasi-geostrophic
singular vortices suggested in (Reznik & Kizner 2007). In particular, the equations
were presented that govern the cooperative evolution of a singular vortex and the
regular background flow under the rigid-lid condition. Although a singular vortex con-
fined to the upper layer was considered, after interchanging indices 1 and 2, the results
become applicable to the case when the singular vortex resides in the lower layer.

A new steady exact solution was obtained that can be categorized as a hybrid
regular–singular modon. This hybrid modon consists of a dipole component and a
circularly symmetric rider. The rider is a superposition of the upper-layer singular
vortex and a regular circularly symmetric flow. In the upper layer, the singular
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component is dominant in the rider, whereas in the lower layer, the regular component
prevails. The singular and regular components of the rider imply rotation in opposite
directions, and the total angular momentum of the modon is zero. The dipole
component of the modon in the lower-layer is much stronger than that in the upper-
layer; this affords the advection of the singular vortex with the constant speed of
the modon’s translational motion. Thus, our hybrid modon can be considered as a
model of apparently monopolar and nearly steady localized eddies occurring in the
atmosphere and oceans.

An important property of the hybrid modon solution is its smoothness in the
sense that the streamfunction in each layer is continuous up to the second derivatives
everywhere except for the location of the singular vortex. Smooth regular dipole-
plus-rider solutions on the β-plane were first suggested by Kizner (1984, 1997) for
any stratification of the fluid. Numerical simulations ran with multi-layer versions
of these solutions (Kizner et al. 2002, 2003a) revealed that such smooth modons are
much more durable than the modons with non-smooth riders described by Flierl et al.
(1980). This motivated our interest in looking for a solution with a continuous regular
PV field. Baroclinicity of the flow, which supplies an additional degree of freedom
to the problem, appears to be a key factor enabling the construction of the exact
smooth hybrid modon solution. This is supported by the fact that, in the barotropic
case, only an approximate hybrid modon solution has been found so far (Reznik
1986). Similarly, although asymptotic solutions were obtained both in the barotropic
(Larichev & Reznik 1976b; Nycander 1988) and baroclinic (Kizner 1986a, b) cases,
smooth exact regular modon solutions with riders were found only in a stratified fluid
(Kizner 1984, 1988, 1997).

Non-stationary drift of a singular vortex in a stratified fluid on a β-plane depends
significantly on the vertical structure of the vortex. This is because of the possible
interaction between vortex elements residing at different depths. For example, if
the vortex (whether singular or regular) in a two-layer fluid is initially a purely
baroclinic monopole (i.e. a pair of coaxial vortices with zero net angular momentum),
then, because of the β-effect, its axis inclines, the upper and lower vortices start
interacting, and eventually the vortex transforms into an eastward-travelling modon
(McWilliams & Flierl 1979; Mied & Lindemann 1982; Reznik et al. 1997; Kizner
et al. 2002). In this paper, we considered the motion of a singular vortex that
resides in one layer of a two-layer fluid. From the beginning, such a vortex is
not purely baroclinic, but contains both baroclinic and barotropic modes which are
comparable in magnitude. The presence, in the initial state, of a substantial barotropic
component (along with the baroclinic one) makes the upper and lower flows co-
rotating. This changes the vortex evolution considerably compared to the above
scenario.

We assume the regular field to be zero at the initial instant, and examine the
development of the regular β-gyres at subsequent times. The main result of this
analysis is that the influence of the baroclinic component of the β-gyres on the vortex
drift attenuates, and the β-gyres tend to become barotropic with increasing time.
Accordingly, the trajectory of the vortex appears qualitatively close to the track of a
barotropic monopole on a β-plane.
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Appendix A. Fulfilment of the matching conditions
Until the sign of k2

2 is specified, the solution to (3.14) can be written in the form of
(3.15), where

Gn(|k2| r) =

{
−In(|k2| r), k2

2 < 0,

Jn(k2r), k2
2 > 0,

n = 0, 1; (A1a)

and
Z0(|k2| r) =

{
−K0(|k2| r), k2

2 < 0,

1
2
πY0(k2r), k2

2 > 0.
(A1b)

Further, conditions (3.6) rewritten in terms of the normal-mode variables (3.7) are
imposed on the function ψ̄

(0)
i,r . This entails the use of formulae (3.15a), (3.17a) and the

well-known formulae for the derivatives of the Bessel functions, G′
n, G′′

n and K ′
0, K ′′

n

(Abramowitz & Stegun 1965). As a result, the following system of linear equations in
A,D,B0, B

(Λ)
0 and Ci is obtained:

ᾱi

[
Āg̃i(a) +

D

k2
i

]
+ CiG0(k̄i) = εi,1B0K0(p̄) + εi,2B

(Λ)
0 K0(p̄Λ), (A2a)

−ᾱiĀag̃′
i(a) + sgn(k2

i )k̄iCiG1(k̄i) = εi,1B0p̄K1(p̄) + εi,2B
(Λ)
0 p̄ΛK1(p̄Λ), (A2b)

−ᾱiĀa2g̃′′
i (a) + k2

i a
2CiG

′
1(k̄i) = εi,1B0p̄

2K ′
1(p̄) + εi,2B

(Λ)
0 p̄2

ΛK ′
1(p̄Λ), (A2c)

where an overbar designates differentiation. Equations (A2) determine the rider. In a
similar way, using (3.6), (3.7), (3.15c) and (3.17b), we arrive at the system of linear
equations in coefficients A

(1)
i , B1 and B

(Λ)
1 that determine the antisymmetric component

of the solution:

A
(1)
i G1(k̄i) − ᾱi(k

2U + β)

k2
i

a = εi,1B1K1(p̄) + εi,2B
(Λ)
1 K1(p̄Λ), (A3a)

−sgn(k2
i )A

(1)
i k̄2

i G1(k̄i) = εi,1B1p̄
2K1(p̄) + εi,2B

(Λ)
1 p̄2

ΛK1(p̄Λ), (A3b)

sgn(k2
i )A

(1)
i k̄iG2(k̄i) = εi,1B1p̄K2(p̄) + εi,2B

(Λ)
1 p̄ΛK2(p̄Λ). (A3c)

In (A2) and (A3), the notation is:

k̄i = |ki | a, p̄ = pa, p̄Λ = pΛa, εi,1 = 1 + ᾱi , εi,2 = α2 − α1ᾱi , (A4a)

Ā =
α1A

2π
, g̃i =

k2 + p2

(k2
i + p2)(k2

i + p2
c )

ḡi . (A4c)

The solvability condition for the system of equations (A3b, c) can be written as

ε1,1ε2,2(1 + H1Q)(1 + H2QΛ) = ε1,2ε2,1(1 + H2Q)(1 + H1QΛ), (A5a)

where

H1 =
k̄1I1(k̄1)

I2(k̄1)
, H2 =

k̄2G1(k̄2)

G2(k̄2)
, Q =

K2(p̄)

p̄K1(p̄)
, QΛ =

K2(p̄Λ)

p̄ΛK1(p̄Λ)
. (A5b–e)

Using (3.10), it will readily be seen that

ᾱ1ᾱ2 = −Λ2

Λ1

, ε1,1ε2,2 =
α2

ᾱ1

(1 + ᾱ1)
2, ε1,2ε2,1 =

α2

ᾱ2

(1 + ᾱ2)
2. (A6a–c)
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Thus, the products ε1,1ε2,2 and ε1,2ε2,1 are opposite in sign. Because the parameters
H1, Q and QΛ are positive, condition (A5a) holds if H2 is negative. This implies
that k2

2 > 0 and Gn(k̄2) ≡ Jn(k̄2), n = 0, 1, 2 (compare (3.14b) and (3.16a)). Moreover,
H2 < 0 only if (3.19) is fulfilled.

It is a matter of direct verification to see that (A3a) and (A3b) are linearly dependent.
Under condition (A5a), equations (A3b) and (A3c) are also linearly dependent. Thus,
the resulting system of linearly independent equations consists of six equations: (A5a),
equations

A
(1)
1 I1(k̄1) +

ᾱi(k
2U + β)

k̄2
1

a3 = ε1,1B1K1(p̄) + ε1,2B
(Λ)
1 K1(p̄Λ), (A7a)

A
(1)
1 k̄2

1I1(k̄1) = ε1,1B1p̄
2K1(p̄) + ε1,2B

(Λ)
1 p̄2

ΛK1(p̄Λ), (A7b)

−A
(1)
1 k̄1I2(k̄1) = ε1,1B1p̄K2(p̄) + ε1,2B

(Λ)
1 p̄ΛK2(p̄Λ), (A7c)

A
(1)
2 k̄2J2(k̄2) = ε2,1B1p̄K2(p̄) + ε2,2B

(Λ)
1 p̄ΛK2(p̄Λ), (A7d)

and the equation that follows from (3.2b), (3.15c) and (3.16a):

1

ᾱ2 − ᾱ1

[
1

2

(
ᾱ2 |k1| A(1)

1 − ᾱ1k2A
(1)
2

)
+ ᾱ1ᾱ2(k

2U + β)

(
1

|k1|2
+

1

k2
2

)]
= −U. (A7e)

To determine the antisymmetric component of the modon, we have seven equations:
(A5a), (A7a)–(A7e), and (3.11) in eight unknowns, A

(1)
1 , A

(1)
2 , B1, B

(Λ)
1 , k1, k2, U and a;

the parameters ᾱ1, ᾱ2 and k are expressed in terms of k1, k2 and U using (3.9), (3.10).
Thus, the family of solutions for the antisymmetric component is one-parameter.
To solve these equations, the following algorithm is applied. Equations (A7a)–(A7d)
are resolved with respect to A

(1)
1 , A

(1)
2 , B1 and B

(Λ)
1 ; the coefficients A

(1)
1 and A

(1)
2 are

then substituted into (A7e). The resulting equation and equations (3.11) and (A5a)
constitute a nonlinear system of equations in k1, k2, U and a. By fixing a specific
translation speed U, we find k1, k2 and a, and, subsequently, calculate the coefficients
A

(1)
1 , A

(1)
2 , B1 and B

(Λ)
1 .

Once the dipole component of the modon is known, the parameters of the rider
can be calculated. Six parameters Ā, C1, C2, B0, B

(Λ)
0 and D are determined by six

equations (A2). These equations are linearly dependent and can be reduced to the
following five equations in six unknowns:

ᾱ1[−(k2 + p2)ψ2,s(a) + D]=ε1,1

(
k2

1 + p2
)
B0K0(p̄) + ε1,2

(
k2

1 + p2
Λ

)
B

(Λ)
0 K0(p̄Λ), (A8a)

−ᾱiĀag̃′
i(a) + sgn(k2

i )k̄iCiG1(k̄i) = εi,1B0p̄K1(p̄) + εi,2B
(Λ)
0 p̄ΛK1(p̄Λ), (A8b)

−ᾱi[k
2
i a

2Āg̃i(a) + (k2 + p2)a2ψ2,s(a)] − k2
i a

2CiG0(k̄i)

= εi,1B0p̄
2K0(p̄) + εi,2B

(Λ)
0 p̄2

ΛK0(p̄Λ). (A8c)

Given Ā, the system of equations (A8) becomes well-defined and always has a non-
trivial solution.

Appendix B. Long-term asymptotic estimates
First, we consider the integrals in (4.14c), (4.14d) that determine the contribution of

the baroclinic mode of the regular flow to the advection of the singular vortex. Our
immediate aim is to show that

Wi ≡
∫ ∞

0

r2K1(r) cos bitdr = O

(
1

t

)
, t → ∞. (B1)
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For this purpose, we apply integration by parts:

Wi =
1

t

∫ ∞

0

r2K1(r)

b′
i

d(sin bit) =
1

t

[
r2K1(r)

b′
i

sin bit

∣∣∣∣
∞

0

−
∫ ∞

0

(
r2K1(r)

b′
i

)′

sin bitdr

]
.

(B2)
From (4.7), the following equations are obtained:

b′
1 = −1

r

(
α1p

2K2(pr) + α2p
2
ΛK2(pΛr)

)
, b′

2 = −α1

r

(
p2K2(pr) − p2

ΛK2(pΛr)
)
,

(B3a, b)
yielding:

b′
1 = − 2

r3
+ O

(
1

r

)
, b′

2 = −α1

2r
+ O(r2 ln r), r → 0, (B4a, b)

b′
i = −α1

√
π

2
p3/2 e−pr

√
r

[
1 + O

(
1

r

)]
, r → ∞. (B5)

By virtue of (B4), (B5),

r2K1(r)

b′
i

∣∣∣∣
∞

0

= 0,

(
r2K1(r)

b′
i

)′
∣∣∣∣∣
r=0

= 0. (B6a, b)

Lastly, because p < 1 (assumption (4.5)), the function r2K1(r)/b
′
i decreases

exponentially with r → ∞. Thus, both terms in square brackets in (B2) are bounded,
which proves the estimate given by (B1).

Similarly, it can be shown that∫ ∞

0

r2K1(r) sin bitdr = O

(
1

t

)
, t → ∞, (B7)

Therefore, the contribution of the baroclinic β-gyres to the advection of the singular
vortex goes to zero with time:

UBC = O

(
1

t

)
, VBC = O

(
1

t

)
, t → ∞. (B8)

Estimates (B1) and (B7) are also valid for the integrals in (4.11c), (4.11d). Therefore,
at any fixed r,

ψBC = O

(
1

t

)
, t → ∞. (B9)

In other words, the baroclinic components of the β-gyres decrease with time.
The evolution of the barotropic mode is quite different: this component increases

with time. To prove this statement, consider the following integrals:

Pc =

∫ ∞

0

r(1 − cos bit)dr, Ps =

∫ ∞

0

r sin bitdr. (B10a, b)

The first of these integrals can be represented as

Pc = Sc + O(1), Sc =

∫ ∞

R

r(1 − cos bit)dr, t → ∞, (B11)
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where R > 0. Let R be large enough to allow the substitution of the asymptotic
expression

bi = c
e−pr

√
r

[
1 + O

(
1

r

)]
, c = α1

√
πp

2
(B12)

for bi in Sc at large r. By changing the variable in the integral in (B11) from r to bi ,
we obtain:

Sc = −
∫ B

0

r(bi)

b′
i[r(bi)]

(1 − cos bit)dbi, B = bi(R). (B13)

Resolving (B12) with respect to r yields:

r = − 1

p
ln bi + O

(
ln |ln bi |

)
, b′

i
∼= −pbi, bi → 0, (B14)

and substitution of (B14) into (B13) provides:

Sc
∼= − 1

p2

∫ B

0

ln bi

bi

(1 − cos bit)dbi. (B15)

where the symbol ∼= is used to denote asymptotic equalities for bi → 0.
To estimate Sc at large times, we introduce a new variable, b̄i = bit:

Sc
∼= − 1

p2

∫ B

0

ln bi

bi

(1 − cos bit)dbi = − 1

p2

[∫ Bt

0

ln b̄i

b̄i

(1 − cos b̄i)db̄i − ln t

∫ Bt

0

1 − cos b̄i

b̄i

db̄i

]
.

(B16)

It is easy to verify that∫ Bt

0

ln b̄i

b̄i

(1 − cos b̄i)db̄i = 1
2
ln2 Bt + O(1), (B17a)∫ Bt

0

1 − cos b̄i

b̄i

db̄i = lnBt + γ + O

(
1

t

)
, (B17b)

where γ is a constant (e.g. Abramowitz & Stegun 1965). Substitution of estimates
(B17) into (B16) leads to the asymptotic relationship

Sc =
1

p2

(
1

2
ln2 t + γ ln t + O(1)

)
. (B18)

Therefore,

Pc =

∫ ∞

0

r(1 − cos bit)dr =
1

p2

(
1

2
ln2 t + γ ln t

)
+ O(1), t → ∞. (B19)

In the same way, the asymptotic behaviour of Ps is established. First, we can write:

Ps = Ss + O

(
1

t

)
, Ss =

∫ ∞

R

r sin bitdr, t → ∞, (B20)

where R > 0. Next, Ss is represented as

Ss = − 1

p2

∫ B

0

ln bi

bi

sin bitdbi, (B21)
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yielding the equalities

Ss = − 1

p

[∫ Bt

0

ln b̄i

b̄i

sin b̄idb̄i − ln t

∫ Bt

0

sin b̄i

b̄i

db̄i

]
=

1

p2

[
π

2
ln t − c0 + O

(
ln t

t

)]
,

(B22a)
where

c0 =

∫ ∞

0

ln x

x
sin xdx. (B22b)

Lastly, relationships (B20), (B21) and (B22) provide:

Ps =

∫ ∞

0

r sin bitdr =
1

p2

(π

2
ln t − c0

)
+ O

(
ln t

t

)
, t → ∞. (B23)

Now the estimates given by formulae (B10a), (B10b), (B19) and (B23) are substituted
into (4.14a), (4.14b). This yields:

UBT =
1

p2

[
1

2
ln2 t + γ ln t

]
+ O(1), t → ∞, (B25a)

VBT =
1

p2

(π

2
ln t − c0

)
+ O

(
ln t

t

)
, t → ∞. (B25b)

Thus, it can be concluded that the contribution of barotropic β-gyres to the advection
of the singular vortex increases with time. Analogous asymptotic estimates of integrals
in (4.11a), (4.11b) lead to the conclusion that, at a fixed r,

ψBT = r(−UBT sin θ + VBT cos θ) + O(1) (B26)

with t → ∞.
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